Bridging alkyls in \boldsymbol{d}-transition metal chemistry: Reactions of $(\operatorname{cod})_{2} M_{2}(\mu-R)_{2}$ with organolithium reagents to give $(\operatorname{cod})_{2} M_{2}(R)_{4} L_{2}$, where M is $R h$ or Ir, and the crystal structure of $(\operatorname{cod})_{2} \mathbf{R h}_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4} \mathrm{Li}_{2}$ and (cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$

Matthew A. Kulzick, Richard A. Andersen *, Earl L. Muetterties **
Chemistry Department, University of California, Berkeley, California 94720 (U.S.A.)

and Victor W. Day
Chemistry Department, University of Nebraska, Lincoln, Nebraska 68588 (U.S.A.)
(Received May 15th, 1987)

Abstract

The bridging alkyls, $(\operatorname{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{R})_{2}$ where R is Me or $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$, react with one molar equivalent of RLi to generate the thermally stable dialkylrhodates, (cod) $\mathrm{Rh}(\mathrm{R})_{2} \mathrm{Li}$, which may be crystallized from hydrocarbons. X-Ray crystallography of the compound with $\mathrm{R}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ shows that the complex is a centrosymmetric dimer with space group $C 2 / c, a 24.370(6), b 9.946(2), c 17.791(5) \AA, \gamma$ $106.62(2)^{\circ}$, and $V 4132(2) \AA^{3}$. The dimer is cleaved by reaction with the Lewis base, $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$, to give (cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$ (tmed) as shown by X-ray crystallography. The space group is Pbca, a 16.532(5), b 19.239(5), c 18.141(4), and $V 5770(3) \AA^{3}$. The coordination geometry about the square planar Rh^{1} atom is similar in both compounds; Rh^{1} is bonded to cod and two $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ groups and the lithium atom is oriented ca. 30° off a normal to the rhodium atom towards the $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ groups with a $\mathrm{Li} \cdots \mathrm{Rh}$ distance of ca. $2.6 \AA$. Solution NMR spectroscopy as a function of temperature and solvent on these and the related iridates, (cod) $\operatorname{Ir}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}($ tmed $)$ and $(\mathrm{cod}) \operatorname{Ir}(\mathrm{R})_{2} \mathrm{Li}$ where R is Me or $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$, are interpreted relative to the solid state structures.

Two principal reactivity patterns of bridging alkyls in main group organometallic chemistry are (i) bridge cleavage reactions with Lewis bases to give mononuclear

[^0]coordination complexes and (ii) reactions with lithium alkyls to give anionic or "ate" complexes [1]. The small number of bond cleavage reactions in d-transition metal chemistry [2] is doubtless related to the rather small number of bridging alkyls that are known for the d-transition metals [3]. We recently described reactions of the bridging alkyls of rhodium, $(\operatorname{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{R})_{2}$ where R is Me or $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$, with a variety of Lewis bases to give mononuclear $(\operatorname{cod}) R h(R)\left(\mathrm{PR}_{3}\right)$ [4]. In this paper we describe the reactions of the bridging alkyls with lithium alkyl.

Synthetic studies

The anionic rhodium compounds may be prepared by the two synthetic routes shown in eq. 1, bridge cleavage of the neutral bridging alkyl. or more conveniently by the route shown in eq. 2 . The iridates were prepared by the
$(\operatorname{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{R})_{2}+2 \mathrm{RLi} \rightarrow 2(\operatorname{cod}) \mathrm{Rh}_{2} \mathrm{Li}$
$(\operatorname{cod})_{2} \mathrm{M}_{2}(\mu-\mathrm{Cl})_{2}+4 \mathrm{RLi} \rightarrow 2(\operatorname{cod}) \mathrm{MR}_{2} \mathrm{Li}+2 \mathrm{LiCl}$
second route since the bridging alkyls are as yet unknown for iridium [3f.5]. The second route is the preferred synthetic route to all of the anions: synthesis details are in the Experimental Section. The synthetic procedure involves addition of a lithium alkyl. $\mathrm{R}=\mathrm{Me} . \mathrm{Me}_{3} \mathrm{CCH}_{2}$, or $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$, to (cod) $2_{2} \mathrm{M}_{2}(\mu-\mathrm{Cl})_{2}$ in diethyl ether at $-70^{\circ} \mathrm{C}$ followed by warming to room temperature and eventual erystallization from an aliphatic hydrocarbon. The base-free anions are freely soluble in aromatic hydrocarbon and ethereal solvents. They are stable at room temperature for prolonged periods of time in absence of air and moisture. The neopentyl compounds could not be obtained in analytically pure form presumably due to their thermal sensitivity, though the similarity of spectroscopic properties (Table 1) suggests that they are similar to the other compounds prepared in this work. The $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ complexes. (cod) $\mathrm{M}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}($ tmed $)$. can be isolated by addition of tmed to solutions of the anions followed by orystallization from an aliphatic hydrocarbon solvent. These complexes also are thermally stable at room temperature for prolonged periods of time.

It is of interest to compare the properties of the 1.5 -cyclooctadiene metallates with those of the phosphine metallates. $\left(\mathrm{Me}_{3} \mathrm{C}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CMe}_{3}\right)_{2} \mathrm{MR}_{2} \mathrm{Li}(\mathrm{L})\right.$, [6]. The cod complexes are obtained free of diethyl ether or any other coordinating solvent on crystallization from hydrocarbons. In contrast, the phosphine complexes could never be obtained free of coordinating ether and the complexes crystallize with one to two ether molecules per lithium. It is tempting to suggest that this difference is primarily a steric one since the cod complexes are dimeric in the solid state (see below) and that the bulky phosphine ligands prevent association. Thus. in the cod complexes the lithium atom achieves four (or greater) coordination by dimerizing; when dimerization is blocked by stenc hindrance. the lithium atom achieves four (or greater) coordination by coordinating to an ether or another Lewis base.

The solution NMR spectra (Table 1) of the anions are complicated since they depend on solvent and temperature. The features due to the cod resonances. particularly those due to the cod-olefinic resonances are quite revealing relative to symmetry in solution. Given the complex nature of the solid state structure of

Table 1
NMR spectroscopic data ${ }^{a}$

$(\mathrm{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$					
SiCH_{2}	SiMc_{3}		cod-olefin		cod-aliphatic
${ }^{1} \mathrm{H}$, thf $-d_{8}, 20^{\circ} \mathrm{C}$					
-0.52d	$-0.02 \mathrm{~s}$		3.40		2.12 m
$\underset{13 \mathrm{C}}{J \mathrm{HRh}}=1.5$					1.61 m
11.3 td					
$J \mathrm{CH}=115$	5.90q		73.4dd		32.8 t
$J \mathrm{CRh}=27.7$	$\mathrm{JCH}=116$		$J \mathrm{CH}=153$		$J \mathrm{CH}=123$
			$J \mathrm{CRh}=8.7$		
${ }^{1} \mathrm{H}, \mathrm{PhMe}-d_{8}, 20^{\circ} \mathrm{C}$					
-0.80s	0.32 s		3.80s		2.24 m
					1.80 m
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$					
10.0 d	4.70s		81.3s,br		31.4s
$J \mathrm{CRh}=28.2$					
${ }^{1} \mathrm{H}, \mathrm{PhMe}-d_{8},-80^{\circ} \mathrm{C}$					
-0.31s,br	0.48 s		4.05s		2.25 m
$\begin{gathered} -0.80 \mathrm{~s}, \mathrm{br} \\ { }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \end{gathered}$			3.20 s		1.67 m
$b \quad$ (${ }^{\text {a }}$	4.50 s		83.6s,br		31.3s
			80.7s.br		30.5s
(cod) $\mathrm{Ir}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$					
${ }^{1} \mathrm{H}$, thf $-d_{8}, \quad 60^{\circ} \mathrm{C}$					
0.34 s	-0.07s		2.77s		1.88 m
					1.26 m
${ }^{13} \mathrm{C}$					
18.0t	6.00 q		58.0 d		34.0t
$J \mathrm{CH}=113$	$J \mathrm{CH}=114$		$J \mathrm{CH}=154$		$J \mathrm{CH}=124$
0.76d	0.35 s		3.55s		2.16 s
$J \mathrm{HH}=7$			2.37s		1.40 m
0.11 d					
${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$					
	4.50 s		68.6s		32.1s
			65.0s		31.2s
(cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}(\mathrm{tmed})$					
$\begin{aligned} & \mathrm{NCH}_{2} \\ & { }^{1} \mathrm{H}, \mathrm{PhMe}-\mathrm{c} \end{aligned}$	${ }^{1} \mathrm{H}, \mathrm{PhMe}-d_{8},-30^{\circ} \mathrm{C}$				cod-aliphatic
1.40 s	$-0.60 \mathrm{~d}$	0.49s	1.77s	4.12s, br	2.59 m
	$J \mathrm{HH}=8$			$4.03 \mathrm{~s}, \mathrm{br}$	1.95 m
	-1.30d				
	$J \mathrm{HH}=8$				
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$					
56.5 t	8.24 td	5.50 q	45.8 q	79.7dd	32.4t
$J \mathrm{CH}=133$	$J \mathrm{CRh}-35$	$J \mathrm{CH}=118$	$J \mathrm{CH}=136$	$J \mathrm{CH}=155$	$J \mathrm{CH}=122$
	$J \mathrm{CH}=101$			$J \mathrm{CRh}=9$	
				78.7 dd	31.6 t
				$J \mathrm{CH}=155$	$J \mathrm{CH}=125$
				$J \mathrm{Crh}=9$	

Table 1 (continued)

$\mathrm{NCH}_{2} \quad \mathrm{SiCH}_{2}$	SiMe_{3}	NMe:	cod-olefin	cod-aliphatic
(cod)Ir(CH $\left.\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}$ Li(tmed) H, PhMe-dy, $-40^{\circ} \mathrm{C}$				
$1.32 \mathrm{~s} \quad$0.45 d $J \mathrm{HH}-8$ 0.08 d $J \mathrm{HH}=8$	0.55 s	1.69 s	$\begin{aligned} & 3.73 \mathrm{~s}, \mathrm{hr} \\ & 3.35 \mathrm{hr} \end{aligned}$	$\frac{2.25 \mathrm{~m}}{1.00 \mathrm{~m}}$
$\begin{gathered} { }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}-50^{\circ} \mathrm{C} \\ 55.4 \mathrm{~s} \end{gathered} \quad 15.7 \mathrm{~s} .$	5.40 ,	45.0 s	$\begin{aligned} & 62.4 \mathrm{br} \\ & 55.4 \mathrm{br} \end{aligned}$	
$\begin{aligned} & \left(\mathrm{cod}_{\mathrm{d}}\right) \mathrm{RhMe} e_{2} \mathrm{Li} \\ & { }^{1} \mathrm{H}, \operatorname{thf}-d_{8}, 20^{\circ} \mathrm{C} \end{aligned}$				
$\begin{array}{ll} & -0.60 \mathrm{~d} \\ \mathrm{C} . & J \mathrm{HRh}=1.5 \end{array}$			3.505	$\frac{2.1 \mathrm{~m}}{1.75 \mathrm{~m}}$
4.0 qd			77.7 dd	34.41
$J \mathrm{CH}=120$			$J \mathrm{CH}=153$	JCH=127
$J \mathrm{CRh}=38$			$/ / \mathrm{CRh}=8$	
$\begin{aligned} & \left(\text { (codj)HME} e_{2} L i\right. \\ & { }^{1} \mathrm{H} \cdot \operatorname{thf}-d_{s}-20^{\circ} \mathrm{C} \end{aligned}$				
0.32 s			2805, br	$\begin{aligned} & 1.80 \mathrm{~m} \\ & 1.21 \mathrm{~m} \end{aligned}$
${ }^{13} \mathrm{C}$				
13.04			58.9 d	34.11
$\begin{aligned} & J \mathrm{CH}=114 \\ & { }^{1} \mathrm{H} . \mathrm{PhMe}-d_{8} \cdot 18^{\circ} \mathrm{C} \end{aligned}$			$J \mathrm{CH}=152$	$J(H=122$
0.71 s			$3111 \times$	$\frac{314 m}{56 m}$
$-60^{\circ} \mathrm{C}$				
0.70 s			$\begin{aligned} & 3.355 \\ & 2.49 \end{aligned}$	$\begin{aligned} & 218 \\ & 1980 \\ & 14 \mathrm{~m} \end{aligned}$
$\begin{aligned} & { }^{1.5} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \cdot 20^{\circ} \mathrm{C} \\ & 11.5 \mathrm{~s} \end{aligned}$			678 s	32.16

"Chemical shifts are in δ-units and coupling constants are in Hertz. "The low solubility at low temperature makes the unequivocal assignment of the methylene region difficult
$(\operatorname{cod})_{2} \mathrm{Rh}_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}_{2}$ and its tmed complex. see below. we will comment mainly on the apparent molecular symmetry in solution as judged by the cod-olefin resonances.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the dialkylanions in thi- d_{x} are similar to each other and they are temperature invariant from +20 to $-80^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectra show one type of alkyl resonance. one type of cod-olefin and wo kinds of cod-aliphatic protons. The ${ }^{13} \mathrm{C}$ NMR spectra show one type of alkyl group. cod-olefin, and cod-aliphatic carbon. The spectra are consistent with a molecule of idealized $C_{2 t}$ symmetry, i.e., the mid-points of the chelating diolefin occupy two cis-sites and the alkyl groups occupy the other two cis-sites in a square planar geometry $\left[7^{*}\right]$. It is reasonable to propose that the anions in tetrahydrofuran are

[^1]either solvent separated ion-pairs or contact ion-pairs in which $C_{2 v}$ symmetry is maintained on average.

A comparison of the spectral properties of the four coordinate Rh^{I} compounds, $(\operatorname{cod}) \mathrm{Rh}(\mathrm{R})\left(\mathrm{PMe}_{3}\right)$ [4] and $(\operatorname{cod}) \mathrm{Rh}_{2} \mathrm{Li}(\mathrm{thf})_{x}$, is revealing relative to electron density at the metal center. For the methyls, $\mathrm{R}=\mathrm{Me}$, the ${ }^{1} \mathrm{H}$ chemical shift $(\delta(\mathrm{H}))$ of the methyl group is shielded in the anion by ca. 0.4 ppm and the ${ }^{13} \mathrm{C}$ chemical shift ($\delta(\mathrm{C})$) by ca. 0.8 ppm relative to the neutral complex. Further, the cod-olefin resonances in the anion, $\delta(\mathrm{H})$, are shielded by ca. 1 ppm and in $\delta(\mathrm{C})$ by 8 ppm relative to the neutral complex. In addition, $\delta(\mathrm{C})$ for the rhodium bound methyl groups in $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CMe}_{3}\right)_{2} \mathrm{RhMe}_{2} \mathrm{Li}(\text { thf })_{x}$ [6] are shielded by ca. 5 ppm relative to the methyl groups in the analogous cod complexes. These chemical shift trends are consistent with the notion that the methyl groups in the phosphine anion carry more negative charge than those on the cod anion and both carry more negative charge than the methyl group on the neutral complex. This implies that cod is a better π-acceptor ligand than $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CMe}_{3}\right)_{2}$.

The carbon chemical shifts for the cod-olefin resonances also may be used to address the question of π-acceptance in analogous rhodium and iridium anions. In (cod) $\mathrm{RhMe}_{2} \mathrm{Li}(\mathrm{thf})_{x}$ and (cod) $\mathrm{IrMe}_{2} \mathrm{Li}(\mathrm{thf})_{x}$ the $\delta(\mathrm{C})$ of the cod-olefin resonance is deshielded by 9 ppm on going from rhodium to iridium. Similarly, in (cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}(\text { thf })_{x}$ the $\delta(\mathrm{C})$ of the cod-olefin resonances are shielded by 15 ppm and the methylene resonances are deshielded by 7 ppm on going from rhodium to iridium. As suggested previously, this trend in carbon chemical shifts is indicative of iridium being a better π-donor than rhodium towards the π-accepting cod ligand [8], a view that has considerable experimental support [9].

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the isolated tmed complexes in PhMe- d_{8} at $20^{\circ} \mathrm{C}$ are similar in form to those of the base-free complexes dissolved in thf $-d_{8}$ at $20^{\circ} \mathrm{C}$. Further, $\delta(\mathrm{C})$ for the methylene and cod-olefin carbons are close to each other in the rhodium and iridium complexes. In contrast, the spectra of the tmed complexes are temperature dependent (Table 1). Two changes are observed for both rhodium and iridium complexes, (cod) $\mathrm{M}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}($ tmed $)$, on cooling to -30 to $-40^{\circ} \mathrm{C}$. Two cod-olefinic resonances appear in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra whereas a single resonance was observed at $+20^{\circ} \mathrm{C}$, indicative of the cod ligand having top-bottom asymmetry, and the methylene resonances of $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ in the ${ }^{1} \mathrm{H}$ NMR spectra appear as AB patterns (coupling to rhodium is not observed). These observations may be explained by proposing that the average symmetry of (cod) $\mathrm{M}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}($ tmed $)$ is the same as that in thf, viz., $C_{2 v}$ at $+20^{\circ} \mathrm{C}$. If the symmetry is reduced by placing the $\mathrm{Li}($ tmed $)$ fragment on either side of the square plane defined by the midpoints of the cod-olefin ligands and the $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ groups, generating an idealized square pyramidal geometry about the transition metal atom, then the molecules will have idealized C_{s} symmetry. This postulate is consistent with the NMR data which assumes a fluxional process is occurring in solution at $20^{\circ} \mathrm{C}$ that averages the cod-olefinic resonances and the prochiral methylene resonances and that this process is slow by $-30^{\circ} \mathrm{C}$. Further, the NMR spectra are consistent with the overall molecular geometry found for the rhodium complex in the solid state (see below).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the base-free compounds in $\mathrm{PhMe}-d_{8}$ are quite related to those of the tmed compounds (Table 1). The spectra are temperature dependent, the high temperature spectra being consistent with a molecule of $C_{2 v}$
symmetry and the low temperature spectra being consistent with a molecule of $C_{\text {, }}$ symmetry and that the barrier to interconversion is ca. $10 \mathrm{kcal}_{\mathrm{c}}$ mole ${ }^{-1}$. Again, the NMR results are consistent with the overall dimeric nature of the complexes found in the solid state (see below).

The base-free metallate, $(\operatorname{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$, reacts with Me CCH_{2} Li or (cod)Rh(CH3 CMe_{3}) Li a shown in eqs. 3 and 4.
$(\operatorname{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SMM}_{5}\right)_{2} \mathrm{Li}-2 \mathrm{LiCH}_{2} \mathrm{CMe}_{3}=(\operatorname{cod}) \mathrm{Rh}^{\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2} \mathrm{Li}}$

$$
\begin{equation*}
\therefore \mathrm{LiCH}_{2} \mathrm{SiMc}_{3} \tag{3}
\end{equation*}
$$

$(\operatorname{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right) \mathrm{Li}+(\operatorname{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2} \mathrm{Li} \Rightarrow$

$$
\begin{equation*}
2(\mathrm{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right) \mathrm{Li} \tag{4}
\end{equation*}
$$

in either PhMe- d_{x} or thf- d_{x}. The equilibria are set up rapidly at rom temperature as monitored by ${ }^{1} \mathrm{H}$ and ${ }^{12}$ C NMR spectroscopy. These studies suggent, though do not prove, that the fluxional mechanism for the base free complexes is an intermolecular process. These exchange reactions maty be contrasted with the lack of such exchange reactions wh ($\mathrm{Me}_{3} \mathrm{C}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{CM}_{3}\right)_{2} \mathrm{RhMe}_{2}$ Lithe), 16). Clearly. the cod metallates show rather different reactivity patterns than ther anabogous phosphine metallates, a difference that is being sudied in the laboratory

X-Ray crystallographic studies

The positional parameters for the tmed and base-free complexes are in Tables 2 and 3, respectively. Bond lengths and angles are in Tables 4 and 5 and crystal data are in Table 6 . An ORTEP of the tmed complex is shown in Fig. 1 and Fig. 2 shows the atom numbering scheme for the base-free complex. Migures 3 and 4 whows vews of the inner coordination sphere of the metal atom in the base-free complex with the nonessential atoms omitted for clarity

The tmed complex has idealized $C_{\text {, }}$ symmetry with the Li(tmed) fragment sitting below the square planar (cod)Rh($\left.\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}$ fragment such that the $\mathrm{LiC}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ distances are $2434(8) \mathrm{A}$ and $2.325(8) \mathrm{A}$ (aveage is $2.38+0.03 \mathrm{~A}$). the Li Rh distance is $2.563(9) \mathrm{A}$ and the $\mathrm{Rh}(\mathrm{Ca}, \mathrm{a} 2)$ Li angles are 61.63$)^{\circ}$ and $59.3(2)^{\circ}$ (average is $60.5 \div 0.6^{\circ}$). In addition, two long codolefin to lithum contacts are observed, Li (6 ($)$ is $3.54(1) \mathrm{A}$ and $\mathrm{L} \cdot \mathrm{C}(1)$ is $372(1) \mathrm{A}$. The $\mathrm{Li}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right.$) fragment is normal and the bond lengths and angles within the fragment agree with other structures $[10]$.

The average $\mathrm{Li}-\mathrm{CCH}_{2} \mathrm{SiMe}_{3}$) bond length of $2.38 \pm 0.03 \mathrm{~A}$ in the rhodate is longer than the equivalent bond in $\left(\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}\right)_{6}$ of $2.23 \pm 0.04 \mathrm{~A}$ [1 1 a though it is equal to the $\mathrm{Li}-\left(\right.$ bond length of $2.38(2) \mathrm{A}$ in $o-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CHSiMe})_{2}$ Li(tmed) [11b]. The four-hydrogen atoms on the methylene carbons of the CH_{2} SiMe, group were located and refined isotropically. Two of the hydrogens, one on each methylene group, have short Li \cdot H distances of $1.92(4)$ A and $2.17(4)$ A. These distances are similar to the $\mathrm{Li} \cdots \mathrm{H}$ distances found in (cyclohexyllithium, and $\left(\mathrm{LiMe}_{4} \mathrm{~B}_{4}[12]\right.$.

The $\mathrm{Rh}-\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ distances of 2,1176) A and 2.1346) A [average is $2.126 \pm 0.005 \mathrm{~A}]$ are shorter by $0.084 \AA$ than the homonuchear bridging methyl distance of $2.210 \pm 0.012 \mathrm{~A}$ in $(\mathrm{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{Me})_{\text {, }[3 f]}$ and 0.117 A longer than the

Table 2
Fractional atomic coordinates for $(\mathrm{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}($ tmed $)\left(\times 10^{4}\right)$

Atom	x	y	z	Equivalent isotropic thermal parameter $B\left(\AA^{2}\right)^{a}$
Rh	1779(1)	979(1)	554(1)	37(1)
Si(a)	3720(1)	1100(1)	1223(1)	$57(1)$
Si(b)	2165(1)	-664(1)	11(1)	52(1)
C(a1)	3042(3)	1173(3)	425(3)	46(2)
C(a2)	3807(4)	1934(3)	1750(4)	77(2)
C(a3)	4765(4)	883(4)	899(4)	107(3)
C(a4)	3430(5)	416(4)	1915(4)	107(3)
C(b1)	1884(3)	209(2)	-274(3)	41(1)
C(b2)	1612(5)	- 1005(4)	825(4)	92(3)
C (b3)	1985(5)	- 1301(3)	-751(4)	88(3)
C(b4)	3264(4)	-702(3)	219(5)	95(3)
C(1)	1654(4)	1981(3)	1079(4)	57(2)
C(2)	1647(4)	1495(3)	1619(4)	61(2)
C(3)	901(4)	1258(4)	2024(4)	88(3)
$\mathrm{C}(4)$	483(4)	645(4)	1660(4)	85(3)
C(5)	581(3)	597(3)	842(4)	56(2)
C(6)	512(3)	1142(3)	351(4)	58(2)
C(7)	240(4)	1860(3)	573(4)	77(2)
C(8)	930(4)	2349(3)	754(4)	$80(3)$
N (1)	1607(3)	1705(3)	-1583(3)	69(2)
N (2)	3283(3)	1269(2)	-1512(3)	61(2)
C(e1)	2195(6)	1882(6)	-2139(5)	120(4)
$\mathrm{C}(\mathrm{e} 2)$	2861(6)	1453(5)	-2200(5)	105(4)
$\mathrm{C}(\mathrm{e} 3)$	1168(5)	2343(4)	- 1394(6)	127(4)
$\mathrm{C}(\mathrm{e4)}$	1012(5)	1216(4)	-1849(4)	108(4)
C(e5)	3889(5)	1782(4)	-1337(4)	105(3)
C (e6)	3670(5)	613(4)	-1620(5)	108(3)
Li	2312(6)	1275(5)	-735(5)	48(3)
$\mathrm{H}(\mathrm{ala})$	3146(27)	1611(22)	265(23)	81(15)
$\mathrm{H}(\mathrm{a} 1 \mathrm{~b})$	3245(30)	913(24)	13(28)	77(18)
H(b1a)	2220(22)	288(18)	-647(19)	40(11)
H(b1b)	1345(25)	156(19)	-548(22)	57(13)

${ }^{a}$ For the nonhydrogen atoms this is one-third of the trace of the orthogonalized $B_{i j}$ tensor. For hydrogen atoms, it is the refined value of the isotropic thermal parameter.
terminal $\mathrm{Rh}-\mathrm{C}$ distance of $2.099(2) \AA$ in (cod) $\mathrm{RhMe}\left(\mathrm{P}-\mathrm{i}-\mathrm{Pr}_{3}\right)$ [9e]. The rhodium-cod-olefin distances, $\mathrm{Rh}-\mathrm{C}(1,2,5,6)$, average to $2.167 \pm 0.013 \AA$ and the averaged Rh to midpoint of the cod-olefin distance is $2.06 \AA$. The averaged $\mathrm{Rh}-\mathrm{C}(1,2,5,6)$ is longer than the equivalent distance in $(\operatorname{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{Cl})_{2}$ of $2.00 \pm 0.04 \AA$ [13] and in $(\operatorname{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{Me})_{2}$ of $2.120 \pm 0.013 \AA[3 \mathrm{f}]$.

The geometry of the complex may be viewed in the following manner. The Rh^{1} atom is in the center of a rectangle with an averaged Rh to midpoint of the $\mathrm{C}-\mathrm{C}$ cod-olefin distance of $2.06 \AA$ and a Rh-C distance of $2.13 \AA$. The lithium atom is located $2.38 \AA$ from the bridging carbon atoms and $2.56 \AA$ from the rhodium atom. Thus the lithium atom is displaced 27° away from a perpendicular from the rhodium atom towards the bridging carbon atoms. This position is presumably a

Table 3
Fractional atomic coordinates for $(\mathrm{cod})_{2} \mathrm{Rh}_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4} \mathrm{Li}:\left(\times 10^{4}\right.$

Atom	s	;	z	Equivalent moropic thermat parameter $B\left(A^{2}\right)$
Rh	1671.7(1)	2022.12)	$3996.8(1)$	$\pm .79$
Si(a)	1371(1)	-1389(1)	4187(1)	42
Si(b)	$992(1)$	2616(1)	5371(1)	3.9
(1)	2002(2)	1357(4)	$3037(2)$	4.7
(12)	1420(2)	1167(4)	$2795(2)$	4.7
C(3)	10150)	$2101(4)$	22292)	6.7
(14)	$803(2)$	324144	26120	58
(15)	1206011	32004)	$371(2)$	41
C(6)	$1789(1)$	398364	3508(2)	44
(17)	211201	387769	2894, 2	6.4
(8)	2310(2)	$2485(4)$	27642)	63
(a)	18500(1)	81(3)	$4500(2)$	37
(a 2 Z)	15892)	-2303(4)	$3401(3)$	60
C(a3)	144602)	- 2625(4)	504883	73
C(a4)	$591(2)$	-95815	$3805(3)$	6.8
C(bl)	$166311)$	$2894(4)$	$5082(2)$	34
$\mathrm{C}(\mathrm{b} 2)$	1007(2)	$957(4)$	587023	86
(cb3)	92922	39365	00936	6.8
C(b4)	323 (2)	2720159	$4542(2)$	$0 \cdot 6$
$\mathrm{H}(\mathrm{a} 1 \mathrm{l})$	1884(13)	$132131)$	5078(18)	4.18)
H(al2)	2244(13)	-254(31)	456617	$55(8)$
H(bl1)	1714(13)	$3808(36)$	5101118	$4+8)$
$\mathrm{H}(\mathrm{b} 12)$	1943(16)	$2685(35)$	555020)	428)
Cation				
Li	25312)	$133616)$	$522(4)$	4.4

${ }^{a}$ For nonhydrogen atoms this is wne-third of the trace of the orthogonalized $B_{\text {, tensot. for hydrogen }}$ atoms. it is the refined value of the isotropic themal parameter.

Table 4
Bond lengths (A) and angles (${ }^{\circ}$) in (cod) ${ }_{2} \mathrm{Rh}_{(\mathrm{CH}}^{2}$ SiMe, $)_{2}$ Litmed)

Rh - $\mathrm{C}(\mathrm{al})$	$2.134(5)$	Rh-C(I)	$216046)$
Rh- ($\mathrm{bl}^{\text {l }}$)	2.1145)	$\mathrm{Rh}-\mathrm{Cl} 2)$	$2.183(6)$
		Rh ($\mathrm{Cl}^{\text {c }}$	$2.176(6)$
Rh-Li	2.56399	Rhw (6 (0	21505
li-C(al)	$2.434(8)$	RH - $\mathrm{Cl}, 2)^{*}$	$206.1-$
Li-C(b)	2.37983	Rh-C(5.6) ${ }^{\text {a }}$	2090
$C(a l)-\mathrm{Rh}-\mathrm{C}(\mathrm{bl})$	89.723	C(al)-Rh-C $(1,2){ }^{\prime}$	93.14.
		C(al)-Rh-C(5,6) ${ }^{\text {c }}$	174.11 ?
$\mathrm{C}(1)-\mathrm{Rh}-\mathrm{C}(2)$	$36.30)$	$\mathrm{C}(\mathrm{bl})-\mathrm{Rh}-\mathrm{C}(1.2)^{\prime}$	176.91
$\mathrm{C}(5)-\mathrm{Rb}-\mathrm{C} 6$	$37.2(2)$	$\mathrm{C}(\mathrm{bl})-\mathrm{Rh}-\mathrm{C}(5.6)^{\prime}$	00.36 -
$C(a l)-\mathrm{Rh}-\mathrm{C}(1)$	$89.2(2)$	$C(b 1) \mathrm{Rh}-\mathrm{Cl})$	160.762
$C(a l)-R h-C(2)$	$96.69)$	C(bl) Rh-C(2)	162592
$C(\mathrm{al}) \mathrm{Rh}-\mathrm{C}(5)$	$167.42)$	(ibl)-Rh Cls)	8×92
$C(a)-\mathrm{Rh}-\mathrm{C}(6)$	155.4(2)	C(bl)-Rh C(b)	9172
Li-Rh-C(al)	61.63	It Rh-C(1)	109.743
1i-Rh-C(bl)	59.3123	$\mathrm{Li}-\mathrm{Rh}-(\mathrm{Cl})$	13784
		Li-Rh-6 (S)	127.36
Li-Rh-C(1,2) ${ }^{\text {a }}$	121.0	Li- Rh- (6)	98.4.3)
Li-- $\mathrm{RH}_{1-\mathrm{C}}(5,6)^{\text {a }}$	$113.54 \cdots$		

[^2] respectively, and are therefore listed without estimated standard devations.

Table 5
Bond lengths (\AA) and angles (${ }^{\circ}$) in (cod) ${ }_{2} \mathrm{Rh}_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4} \mathrm{Li}_{2}$

Rh-C(1)	2.189(5)	Rh-Li	2.644(6)
$\mathrm{Rh}-\mathrm{C}(2)$	2.219(5)	$\mathrm{Rh}-\mathrm{Li}^{\text {b }}$	$2.614(6)$
$\mathrm{Rh}-\mathrm{C}(5)$	2.157(3)		
$\mathrm{Rh}-\mathrm{C}(6)$	2.187(4)	$\mathrm{Li}-\mathrm{H}(\mathrm{al1)}$	1.94(3)
		$\mathrm{Li}-\mathrm{H}(\mathrm{a} 12)$	1.97(3)
Rh-C(1,2) ${ }^{\text {a }}$	2.095(-)	$\mathrm{Li}-\mathbf{H}\left(\mathrm{b}^{\prime} 11\right)^{\text {b }}$	2.09(4)
Rh-C $(5,6)^{a}$	2.057(-)	$\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 12\right)^{6}$	2.34(3)
Li-C(al)	2.146 (3)	$\mathrm{Li}-\mathrm{H}(\mathrm{b} 12)$	2.16 (3)
Rh-C(a1)	2.154(3)	$\mathrm{Li}-\mathrm{H}\left(6^{\prime}\right)^{\text {b,c }}$	1.60(-)
$\mathrm{Rh}-\mathrm{C}(\mathrm{bl})$	2.122(4)		
Li-C(bl)	2.312(3)	$\mathrm{Li} \cdots \mathrm{Li}^{\prime}{ }^{\text {b }}$	2.437(6)
$\mathrm{C}(1,2)-\mathrm{Rh}-\mathrm{C}(5,6)^{\text {a }}$	86.2(-)	$\mathrm{Rh}-\mathrm{Li}-\mathrm{Rh}^{\prime}{ }^{\text {b }}$	124.8(1)
$\mathrm{C}(\mathrm{a} 1)-\mathrm{Rh}-\mathrm{C}(\mathrm{b} 1)$	90.2(1)		
$\mathrm{C}(1,2)-\mathrm{Rh}-\mathrm{C}(\mathrm{al})^{a}$	92.3(-)	Rh-Li-Li ${ }^{\text {b }}$	61.8(1)
$\mathrm{C}(5,6)-\mathrm{Rh}-\mathrm{C}(\mathrm{b} 1)^{a}$	91.3(-)	$\mathrm{Rh}^{\prime}-\mathrm{Li}-\mathrm{Li}^{\prime}{ }^{\text {b }}$	63.0(1)
		Rh-Li-H(all)	$68(1)$
$\mathrm{C}(1,2)-\mathrm{Rh}-\mathrm{C}(\mathrm{b} 1)^{\text {a }}$	176.4(-)	Rh-Li-H(a12)	70(1)
$\mathrm{C}(5,6)-\mathrm{Rh}-\mathrm{C}(\mathrm{bl})^{\text {a }}$	178.5(-)	Rh-Li-H($\left.\mathrm{b}^{\prime} 11\right)$	110(1)
		Rh-Li-H(b'12) ${ }^{\text {b }}$	81(1)
$\mathrm{C}(1,2)-\mathrm{Rh}-\mathrm{Li}^{\text {a }}$	115.5(-)	Rh-Li-H(bl2)	68(1)
$\mathrm{C}(5,6)-\mathrm{Rh}-\mathrm{Li}^{\text {a }}$	129.1(-)		
$\mathrm{C}(1,2)-\mathbf{R h}-\mathrm{Li}^{\prime}{ }^{a, b}$	119.4(-)	$\mathbf{H}(\mathrm{al} 1)-\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 11\right)^{\text {b }}$	132(2)
$\mathrm{C}(5,6)-\mathrm{Rh}-\mathrm{Li}^{\prime}{ }^{a, b}$	73.9(-)	$\mathrm{H}(\mathrm{a} 11)-\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 12\right)^{b}$	138(2)
		$\mathrm{H}(\mathrm{all})-\mathrm{Li}-\mathrm{H}(\mathrm{b} 12)$	82(2)
$\mathrm{C}(\mathrm{al})-\mathrm{Rh}-\mathrm{Li}$	51.9(1)	$\mathrm{H}(\mathrm{a} 11)-\mathrm{Li}-\mathrm{Rh}^{\prime}{ }^{\text {b }}$	156(1)
$\mathrm{C}(\mathrm{b} 1)-\mathrm{Rh}-\mathrm{Li}$	64.3(1)	$\mathrm{H}(\mathrm{al1})-\mathrm{Li}-\mathrm{Li}^{\prime}{ }^{h}$	125(2)
$\mathrm{C}(\mathrm{al})-\mathrm{Rh}-\mathrm{Li}^{\text {b }}$ b	107.2(1)		
$\mathrm{C}(\mathrm{b} 1)-\mathrm{Rh}-\mathrm{Li}^{\text {i }}{ }^{\text {b }}$	57.3(1)	$\mathrm{H}(\mathrm{a} 12)-\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 11\right)^{b}$	88(2)
		$\mathrm{H}(\mathrm{a} 12)-\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 12\right)^{\text {b }}$	98(2)
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{Rh}{ }^{\text {c }}$	172(-)	$\mathrm{H}(\mathrm{a} 12)-\mathrm{Li}-\mathrm{H}(\mathrm{b} 12)^{\text {b }}$	121(2)
$\mathrm{I}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{Rh}^{\prime}{ }^{\text {c }}$	63(-)	$\mathrm{H}(\mathrm{al2})-\mathrm{Li}-\mathrm{Rh}^{\prime}{ }^{\text {b }}$	154(1)
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{Li}^{\prime}{ }^{\text {c }}$	126(-)	$\mathrm{H}(\mathrm{a} 12)-\mathrm{Li}-\mathrm{Li}^{\prime}{ }^{\text {b }}$	126(2)
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{H}(\mathrm{a} 11)^{c}$	104(-)		
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{H}(\mathrm{al2})^{\circ}$	104(-)	$\mathrm{H}\left(\mathrm{b}^{\prime} 11\right)-\mathrm{Li}-\mathrm{H}(\mathrm{b} 12)^{h}$	145(2)
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{H}\left(\mathbf{b}^{\prime} 11\right)^{c}$	74(-)	$\mathrm{H}\left(\mathrm{b}^{\prime} 11\right)-\mathrm{Li}-\mathrm{Rh}^{\prime}{ }^{\prime}$	67(1)
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 12\right)^{\text {c }}$	105(-)	$\mathbf{H}\left(\mathrm{b}^{\prime} 11\right) \mathrm{LiLi}^{\prime}{ }^{\text {b }}$	87(2)
$\mathrm{H}\left(6^{\prime}\right)-\mathrm{Li}-\mathrm{H}(\mathrm{b} 12)^{c}$	112(-)	$\mathrm{H}\left(\mathrm{b}^{\prime} 12\right)-\mathrm{Li}-\mathrm{Rh}^{\text {b }}$	67(1)
$\mathrm{H}(\mathrm{b} 12)-\mathrm{Li}-\mathrm{H}\left(\mathrm{b}^{\prime} 12\right)^{6}$	115(2)		

${ }^{a}$ The symbols $C(1,2)$ and $C(5,6)$ are used to denote the centers of the $C(1)-C(2)$ and $C(5)-C(6)$ bonds, respectively, and therefore listed without estimated standard deviations. ${ }^{b}$ Primed (${ }^{\prime}$) atoms are related to nonprimed atoms by the symmetry operation $\frac{1}{2}-x, \frac{1}{2}-y, 1-z{ }^{c}$ Values which are listed involving $\mathrm{H}(6)$ and $H\left(6^{\prime}\right)$ are given without estimated standard deviations since $H(6)$ was included in the structure factor calculations as an idealized atom and was not varied.
reflection of steric effects, the N -methyls avoiding the Si-methyls, and electronic effects, the Li(tmed) fragment seeking out the sites of negative charge.

The geometry of the $(\operatorname{cod}) \mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$ unit in the dimeric base-free complex is remarkably similar to that in the tmed complex. The base-free dimer can be generated by removing the tmed from the (cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}(\mathrm{tmed})$ and joining the two (cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$ fragments so as to generate an inversion

Table 6
Crystal data

	1	II
a (A)	$16.532(5)$	24.370, 6
$b(A)$	$19.239(5)$	$9.946(2)$
$c(A)$	18.141(4)	$17.792(5)$
$\alpha=\beta\left({ }^{\circ}\right.$)	90.00	9000
$\gamma(0)$	90.00	106.622
Crystal system	orthorhombic	monectinic
Space group	Pbea-D ${ }_{2}{ }^{15}$ (No.61)	
Volume (A^{3})	97703;	41223
d (calc) $\mathrm{g} \mathrm{cm}^{3}$)	1.17	1.25
7	8	4dimers)
tomp (${ }^{\circ} \mathrm{C}$)	$20+1$	2:1
Empirical fmw	$\mathrm{C}_{22} \mathrm{H}_{50} \mathrm{LiN}_{2} \mathrm{RhSi}_{2}$	$\mathrm{Cl}_{6} \mathrm{H}_{4} \mathrm{LiRhSi}_{3}$
Formula weight	608.8	288.4
Color	brown	orange
X-ray. (τ, \AA)	0.71073	0.71073
Crystal size (mm)	$0.50 \times 0.50 \times 0.70$	irregular. min 0.45 ma: 11.93
Absorb coeff (cm^{-1})	6.7	9.2
2θ limits (${ }^{\circ}$,	3.0-48.3	30-550
$\sin \theta / \tau(\min , \mathrm{max})$	0.00 .0 .567	0.000650
no. stds	6	6
no. rflx between stds	300	300
no. independent rflx	4608	4725
no. unique rifx	2553	3343
no. parameters	300	216
$R_{1}{ }^{\text {" }}$	0.037	0.30
$\mathrm{R}_{2}{ }^{\text {b }}$	0.034	0.030
GOF"	1.61	1.56

center at the midpoint of the $\mathrm{Li}-\mathrm{Li}$ vector. The molecule has idealized $C_{2 \text { i }}$ symmetry which can most readily be seen by inspection of Fig. 4.

Each lithium atom in the base-free dimer is four coordinate with $\mathrm{LiC}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right.$) distances of $2.146(3) \AA$ and $2.312(3) \AA$ (average is 2.23 ± 0.04 A). The averaged $\mathrm{Li}-\mathrm{C}$ distance in the base-free dimer is ca. $0.15 \AA$ shorter than that in the umed complex. The shorter $\mathrm{Li}-\mathrm{C}$ distance brings one of the cod-olefin carbon atom in each fragment. $\mathrm{C}(6)$, in close contact with a lithium atom with an $\mathrm{Li} \cdots \mathrm{C}$ distance of $2.410(5) \AA$. The two hydrogens on each methylene group were located and refined isotropically. Each hydrogen has short Li $\cdots \mathrm{H}$ contact distances of 1.94(3), 1.97(3). $2.08(4)$ and $2.16(3) \AA$ (average is $2.03 \pm 0.08 \AA$). The averaged $R h(1,2.5,6)$, the cod-olefin carbons, distance of $2.180 \pm 0.015 \mathrm{~A}$ is similar to those in the tmed complex, as is the averaged $\mathrm{Rh}-\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ distance of $2.138+0.008 \mathrm{~A}$.

As mentioned earlier, the geometry of each $\left.(\operatorname{cod}) \mathrm{Rh}_{\left(\mathrm{CH}_{2}\right.} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$ fragment in the dimer is similar to that fragment in the tmed complex. In the dimer. the Rh^{1} atom is in the center of a rectangle with an averaged Rh to midpoint of the $\mathrm{C}-\mathrm{C}$

Fig. 1. ORTEP diagram of (cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$ (tmed), 50% thermal ellipsoids, except for hydrogen which are arbitrary.

Fig. 2. ORTEP diagram of $(\operatorname{cod})_{2} \mathrm{Rh}_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4} \mathrm{Li}_{2}$ showing the atom numbering scheme, 50% thermal cllipsoids, except for hydrogen which are arbitrary.

Figs. ? and 4. ORTEP diagram of (cod), Rh (CH, SiMe, bli, showing two vews of the inner coodination sphere of the metal atoms
cod-olefin distance of 2.08 A and an averaged $\mathrm{Rh}-\mathrm{C}$ distance of 2.14 A . The lithium atom is located 2.23 A from the bridging carbon atoms and 2.63 A from the rhodiunt atoms so that the lithium atom is displaced 32° off a normal to the Rh^{I} atom in the rectangle towards the bridging carbon atoms. In the base-free dimer the location of the lithium atoms is prohably due to the Li atom seeking ot the sites of negative electron density in order to achieve four coordination while mimimizing ligand-ligand repulsions. This electronic effect may be viewed by writing the three

resonance structures \mathbf{A}, \mathbf{B}, and \mathbf{C}. The most controversial is \mathbf{A} since this shows a structure with a direct $\mathrm{Li}-\mathrm{Kh}$ bond. The Li to rhodium distance in each rhodate is ca. $2.6 \AA$ which is in the range found in other d-transition metal lithium compounds [14]. Electron deformation density studies and theory have heen applied to the question of the nature of the Li to d-transition metal hond with the nel result that even though the orbitals are available for bonding the extent of orbital overlap is controversial [15].

Experimental

All manipulations were done under nitrogen or argon by using standard Schlenk techniques or in a Vacuum Atmospheres inert atmosphere box. Elemental analyses
were done by the microanalytical laboratory of this department. Nuclear magnetic resonance spectra were recorded on a Bruker AM500 spectrometer operating at 500 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or on homebuilt machines operating at 180,200 , or $250 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are relative to $\mathrm{Me}_{4} \mathrm{Si}, \delta=0$, with positive values to high frequency.
(cod) Ir $\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$. Trimethylsilylmethyllithium ($0.35 \mathrm{~g}, 3.7 \mathrm{mmol}$) and $(\operatorname{cod})_{2} \mathrm{Ir}_{2}(\mu-\mathrm{Cl})_{2}(0.50 \mathrm{~g}, 0.75 \mathrm{mmol})$ were mixed together, then dicthyl ether $(50 \mathrm{ml})$ was added at $-70^{\circ} \mathrm{C}$. The suspension was stirred for 4 h at $-70^{\circ} \mathrm{C}$ then it was allowed to warm to room temperature. The diethyl ether was removed under reduced pressure and the yellow solid was crystallized from a saturated solution of cyclopentane by cooling ($-70^{\circ} \mathrm{C}$). The crystals were isolated in $77 \%(0.55 \mathrm{~g})$ yield. Anal. Found: C, $39.5 ; \mathrm{H}, 6.99$; Li, 1.39. $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{IILiSi}_{2}$ calc: $\mathrm{C}, 39.9 ; \mathrm{H}, 7.06$; Li, 1.44\%.
(cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}$. This compound was prepared from $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{Li}(0.23$ $\mathrm{g}, 2.4 \mathrm{mmol})$ and $(\operatorname{cod})_{2} \mathrm{Rh}_{2}(\mu-\mathrm{Cl})_{2}(0.20 \mathrm{~g}, 0.40 \mathrm{mmol})$ in diethyl ether in a manner similar to that described for the iridate and the yellow-orange complex was crystallized from cyclopentane $\left(-70^{\circ} \mathrm{C}\right)$ in $76 \%(0.24 \mathrm{~g})$ yield. Anal. Found: C, 49.0; H, 8.94; Li, 1.73. $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{RhLiSi}_{2}$ calcd: C, $49.0 ; \mathrm{H}, 8.67 ; \mathrm{Li}, 1.77 \%$.
(cod) $\mathrm{Ir}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$. Tetramethylethylenediamine $(0.04 \mathrm{ml}, 0.43 \mathrm{mmol})$ was added to $(\mathrm{cod}) \mathrm{Ir}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}(0.40 \mathrm{mmol})$ in diethyl ether (50 ml) and the orange solution was stirred for 1 h at room temperature. The volatile material was removed under reduced pressure and the orange oil was crystallized as orange crystals from a minimum amount of cyclopentane ($-70^{\circ} \mathrm{C}$) in 80% yield. Anal. Found: C, 44.2; H, 8.27; N, 4.56; Li, 1.15. $\mathrm{C}_{22} \mathrm{H}_{50} \mathrm{IrLiN}_{2} \mathrm{Si}_{2}$ calcd: C, $44.3 ; \mathrm{H}, 8.19 ; \mathrm{N}, 4.70 ; \mathrm{Li}, 1.16 \%$.
(cod) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Li}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)$. This compound was prepared in a manner analogous to that of its iridium analogue in 85% yield. Anal. Found: C, $5.20 ; \mathrm{H}, 9.99$; N, 5.38; Li, 1.41. $\mathrm{C}_{22} \mathrm{H}_{50} \mathrm{LiN}_{2} \mathrm{RhSi}_{2}$ calc: C, 52.0; H, 9.91; N, 5.51; Li, 1.36\%.
(cod)IrMe ${ }_{2} \mathrm{Li}$. Methyllithium (9.0 ml of a 0.41 M diethyl ether solution, 3.7 $\mathrm{mmol})$ was added to $(\operatorname{cod})_{2} \mathrm{Ir}_{2}(\mu-\mathrm{Cl})_{2}(0.50 \mathrm{~g}, 1.0 \mathrm{mmol})$ in diethyl ether $(50 \mathrm{ml})$ at $-70^{\circ} \mathrm{C}$. The suspension was stirred at $-70^{\circ} \mathrm{C}$ for 1 h then the flask was allowed to slowly warm to room temperature. The diethyl ether was removed under reduced pressure and the orange residue was crystallized as orange crystals from cyclopentane at $-70^{\circ} \mathrm{C}$ in a yield of $60 \%(0.30 \mathrm{~g})$. Anal. Found: C, $35.5 ; \mathrm{H}, 5.34 ; \mathrm{Li}, 1.88$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{IrLi}$ calcd: $\mathrm{C}, 35.6 ; \mathrm{H}, 5.38 ; \mathrm{Li}, 2.06$.
(cod)RhMe ${ }_{2}$ Li. This compound was prepared in a manner analogous to that of its iridium analogue as a pale yellow powder. Crystallization resulted in substantial decomposition and analytically pure material could not be obtained.
(cod) $\operatorname{Ir}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2} \mathrm{Li}$. Neopentyllithium ($0.12 \mathrm{~g}, 1.6 \mathrm{mmol}$) and (cod) $)_{2} \mathrm{Ir}_{2}(\mu-$ $\mathrm{Cl})_{2}(0.024 \mathrm{~g}, 0.36 \mathrm{mmol})$ were mixed and diethyl ether (50 ml) was added at $-70^{\circ} \mathrm{C}$ and the suspension was stirred at that temperature for 4 h then warmed to room temperature. The suspension was filtered and the filtrate was evaporated to dryness to yield an orange powder in 45% (0.32 g) yield. Attempts to crystallize the powder led to decomposition and the compound was characterized by solution spectroscopy only. ${ }^{1} \mathrm{H}$ NMR ($20^{\circ} \mathrm{C}$, thf $-d_{\mathrm{g}}$): $\delta 2.77$ (s, cod-olefin, 4 H), 1.80 (m, cod-aliphatic, 4 H), 1.42 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CMe}_{3}, 4 \mathrm{H}$), 1.19 (m, cod-aliphatic, 4 H), 1.04 (s , $\mathrm{CH}_{2} \mathrm{CMe}_{3}, 18 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR (PhMe- $d_{8},+20^{\circ} \mathrm{C}$): $\delta 3.5$ (s, br, cod-olefin, 4 H), 2.1
(s, br, cod-aliphatic, 4 H). 1.55 ($\mathrm{s}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CMe}_{3}, 4 \mathrm{H}$) 1.50 (m. cod-aliphatic. 4 H). 1.22 (s. $\mathrm{CH}_{2} \mathrm{CMe}_{3}, 18 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (thf $-d_{8}$, $+20^{\circ} \mathrm{C}$): 59.1 (s. cod-olefin). 46.3 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CMe}_{3}$), 39.3 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CMe}_{3}$), 38.5 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{CMe}$), 34.1 (s. cod-aliphatic)
(cod) $\left.\mathrm{Rh}_{(} \mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2} \mathrm{Li}$. This compound was prepared in a manner analogous to that used to prepare the iridium analogue. The orange-yellow powder was characterized by solution spectroscopy since the molecule is somewhat thermally sensitive. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{PhMe}-d_{8}+20^{\circ} \mathrm{C}$) $: 84.31$ (s , cod-olefin. 4 H). 2.23 (m. cod-aliphatic. $4 \mathrm{H}) .1 .99\left(\mathrm{~m}\right.$, cod-aliphatic. 4 H). $1.28\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CM} \mathrm{C}_{3} .18 \mathrm{H}\right) .0 .45 \mathrm{~s} . \mathrm{M}_{2} \mathrm{CMe} .4$ H).

X-Ray crystallography of (cod)Rh(CH2 SiMe s) Litimed) (I) The air- and mois-ture-sensitive crystals were loaded into glass capillaries inside in inert atmophere glovebox. The capillaries were removed from the box and flame seald. The X-ray crystallographic procedures and programs used were as prevously described [10]. Accurate cell parameters were determined by a least squares fit to the setting angles of the unresolved Mo- K_{α} component of 15 reflections with $2 \theta>25$. The 4608 reflections were obtained. Analysis of the psi-scan data showed a range of relative transmission factors of $0.815-1.000$. The intensity data were corrected empirically. for absorption effects using psi-scans for 6 reflections having 2θ between 12.3° and 34.5° and then corrected for Lorentz and polarization effects. Rejection of redundant data gave a unique set of 2553 data which were used to solve the structure. The rhodium atom position was found by analysis of a three dimensional Patterson map and the remaining atoms were found by conventional Fourier and difference Fourier methods. The rhodium and silicon atoms were corrected for anomalous dispersion. The 10 methyl groups (C(a2), C(a3), C(a4), C(b2), C(b3), C(b4), C(c3) C(e4), (C(e5) and C(e6) and their hydrogens) were refined as rigid rotors with idealized $s p^{3}$-hybridized geometry and a C-H bond length of 0.96 A . The intial orientation of each methyl group was determined from difference Fourier positions for the hydrogen atoms. The final orientation was determined by three rotational parameters. With the exception of the sily ligand methylene hadrogens ($\mathrm{H}_{\mathrm{ala}}, \mathrm{H}_{\text {amp }}$. $\mathrm{H}_{\text {bla }}$ and $\mathrm{H}_{\mathrm{b} \text { b }}$) which were refined as independent isotropic atoms. the remaining hydrogen atoms were included in the structure factor calculations as idealized atoms (assuming $s p^{3}$ - or $s p^{2}$-hybridization of the carbon atoms with a C H bond length of 0.96 A) "riding" on their respective carbon atoms. The isotropic thermal parameters of all hydrogens except the silyl ligand methylene hydrogens were fixed at 1.2 times the equivalent isotropic thermal parameter of the carbon atom to which they are bonded. Table 2 lists the thermal parameters (isorropic) of the sifymethylene hydrogens. In the final least-squares the maximum shift for all parameters is $0.15 \sigma_{\mathrm{v}}$ and the average shift for all parameters is $0.04 \sigma_{p}$ where σ_{p} is the ed of the parameter in question. No peaks were present in the final difference Fourier map above the noise level of 0.46 electron A^{-3}.
X-ray crestallography on (cod) $\mathrm{Rh}_{2}\left(\mathrm{CH}_{2} \mathrm{SiM}_{3}\right)_{4} \mathrm{Li}_{2}$ (II). The air-and moisturesensitive crystals were put into glass capillaries as described above. The diffractometer. programs. etc. were the same as that described above. Acourate cell dimensions were determined by a least squares fit to the setting angles of unresolved Mo- $K_{\text {a }}$ component of 15 reflections with $2 \theta>25^{\circ}$. The 4728 reflections were collected. The intensity data showed a range of relative transmission factors of 0.70 , 104 . The intensity data were corrected. empirically, for absorption effects using psi-scans for 6 reflections have 2θ hetween 12.8° and 39.7° and wire corrected for Lorentz and
polarization effects. Rejection of redundant data gave a unique set of 3343 data which were used to solve the structure. The rhodium atom position was found by analysis of a three-dimensional Patterson map and the remaining atoms were formed by conventional Fourier and difference Fourier methods. The rhodium and silicon atoms were corrected for anomalous dispersion. The terminal methyl groups were refined as rigid rotors assuming $s p^{3}$-hybridization of the carbon atom and a $\mathrm{C}-\mathrm{H}$ bond length of $0.96 \AA$. The initial orientation of each methyl group was determined from difference Fourier positions for the hydrogen atoms. The final orientation of each group was determined by 3 rotational parameters. The hydrogen atoms of the cod ligand were included in the structure factor calculations as idealized atoms (assuming $s p^{3}$ - or $s p^{2}$-hybridization of the carbon atoms and a $\mathrm{C}-\mathrm{H}$ bond length of $0.96 \AA$) "riding" on their respective carbon atoms. With the exception of the silyl ligand, methylene hydrogens (H(al1), $\mathrm{H}(\mathrm{a} 12), \mathrm{H}(\mathrm{b} 11)$ and $\mathrm{H}(\mathrm{b} 12)$) which were refined as independent isotropic atoms, the isotropic thermal parameters of all hydrogen atoms were fixed at 1.2 times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded. The isotropic thermal parameters of $\mathrm{H}(\mathrm{a} 11), \mathrm{H}(\mathrm{a} 12), \mathrm{H}(\mathrm{b} 11)$ and $\mathrm{H}(\mathrm{b} 12)$ refined to final values of $4.1(8), 5.5(8), 4.4(8)$ and $4.2(8) \AA^{2}$, respectively. In the final least squares cycle, the maximum shift for all parameters was $0.31 \sigma_{\mathrm{p}}$ and the average shift for all parameters was $0.05 \sigma_{\mathrm{p}}$. No peaks were present in the final difference Fourier map above the noise level of 0.45 electron \AA^{3}.

Supplementary material available. Anisotropic thermal parameters, atomic coordinates for idealized hydrogen atom positions and additional bond lengths and angles (11 pages). The structure factors are available from Dr. Day upon request.

Acknowledgment

The synthetic work was supported by the National Science Foundation under grant CHE 83-07159. We thank Dr. F.J. Hollander, staff crystallographer at CHEXRAY, University of California, Berkeley for his substantial help with the X-ray crystallographic write-up.

References

1 G.E. Coates and K. Wade, Organometallic Compounds, Vol. 1, 1967, Methuen, London.
2 (a) R.A. Andersen, E. Carmona-Guzman, J.F. Gibson, and G. Wilkinson, J. Chem. Soc., Dalton Trans., (1976) 2204. (b) J.I. Davies, C.G. Howard, A.C. Skapski, and G. Wilkinson, J. Chem. Soc., Chem. Comm., (1982) 1077. (c) C.G. Howard, G. Wilkinson, M. Thornton-Pett, and M.B. Hursthouse, J. Chem. Sue., Dalton Trans., (1983) 2025. (d) C.G. Iloward, G.S. Girolami, G. Wilkinson, M. Thornton-Pett, and M.B. Hursthouse, ibid., (1983) 2631. (e) G.S. Girolami, C.G. Howard, G. Wilkinson, H.M. Davies, M. Thornton-Pett, M. Motevalli, and M.B. Hursthouse, ibid., (1985) 921. (f) P.G. Edwards, F. Felix, K. Mertis, and G. Wilkinson, ibid., (1979) 361. (g) P.G. Edwards, K. Mcrtis, G. Wilkinson, M.B. Hursthouse, and K.M.A. Malik, ibid., (1980) 334. (h) K. Mertis, P.G. Edwards, G. Wilkinson, K.M.A. Malik, and M.B. Hursthouse, ibid., (1981) 705. (i) A.F. Masters, K. Mertis, J.F. Gibson, and G. Wilkinson, Nouv. J. Chem., (1977) 389.
3 (a) R.A. Andersen, R.A. Jones, G. Wilkinson, M.B. Hursthouse, and K.M.A. Malik, J. Chem. Soc., Chem. Comm., (1977) 283. (b) R.A. Andersen, R.A. Jones, and G. Wilkinson, J. Chem. Soc., Dalton Trans., (1978) 446. (c) M.B. Hursthouse, K.M.A. Malik, and K.D. Sales, ibid. (1978) 446. (c) M.B. Hursthouse, K.M.A. Malik, and K.D. Sales, ibid. (1978) 1314. (d) B. Bogdanovic, H. Bönneman, and G. Wilke, Angew. Chem. Int. Ed., 5 (1966), 582. (e) C. Krüger, J.C. Sekutowski, H. Berke, and R.

Hoffmann. 7. Naturforsch., 33b (1978) 1110. (f) (i.F. Schmidt. F.L Muetterties M. A. Beno and J.M. Williams, Proc. Natl. Acad Sci. USA, 78 (1981) 1318. (g) R.B. Catvert and JR Shapley. I Am. Chem. Soc. 100 (1978) 7726. (h) J.R. Shapley. M.F. Cree-Uchisama. GM.Si George. M.R. Churchill, and C Rueno, ibid. 105 (1983) 140 (i) MF Cree-lichiyama. IR Shapley and GM.S \dagger Gcorge, ibid., 108 (1986) 1316. (j) M.B. Hursthouse, R.A. Jones, K.M.A. Mahk and G. Wilkinson. ibid., 101 (1979) 4128 (k) C.P Casey. P.J. Fagan, and W.H Mes, ihid 104 (1982) 1134 . (1) G.A Datkins. M. Green, A.G. Orpen. and F.G.A. Stone S. Chem. Soc Ghem. ©omm. (1482) A1 (m) R.M. Waymouth, B.D. Santarstero. R.H.Grubbs, J. Am. Chem Soc. 106 (ioxa) 4050 (n) I W. Park, P.B. MacKenzic. W.P. Schaefer, and R.H. Grubbs, ibid. 108 (1986) 6402 (oy It Jeffer. A. (i Orpen. F.G.A. Stone, and M.J. Went, I. Chem. Soc., Daton Trans., (1986) 173.

4 MA. Kulzick. R.T. Price. R.A. Andersen, and E.L. Muetterties. I Organomet. Chem. B3 (1987) 105 5 J. Müller. B. Passon, and J. Pickardt, J. Organomet. Chem.. 228 (1982). (51 and 236, 1982) (11 6 A.A. Del Paggio. R.A. Andersen, and EL. Mucterties. Organometallics o (1987) 1260
7 An idealized C_{2} symmetry the cod-olefin protons defme a $A A^{\prime} A^{\prime \prime} A^{\prime \prime}$ pin watem and the cod-aliphatic protons define a $X X^{\prime} X^{\prime \prime} X^{\prime \prime} Y^{Y} Y^{\prime} Y^{\prime \prime} Y$ " opin sysem and the com-defn carbons are chemically equivalent as are the cod-aliphatic carbons.
8 (a) M.H. Chisholm. H.C. Clark. L.E. Manzer, and J.B. Stothers, J. Am. Chem. Soc. 9.4 (1972) 5087 , h) For a cautionary note, see J. Evans and J.R. Norton. Inorg. Chem. 1? (1074) 3042
9 (a) J.R. Shapley and J.A. Osbom. I. Am. Chom. Soc., 92 (1970) 6976; Acc. Chem. Ron.. 6 (1973) 305. (h) D.P. Rice and J.A. Oshom, J. Organomet. Chem. 30 (1971) (84. (c) A. Jese A Bak. D.J. Stufkens, and K. Vrieze, Inorg. Chim. Acta. 29 (1978) 177. (d) A. (. Jesse, A.M Meester, D. Stufkens. and K. Vrieze. ibid. 26 (1978) 129, e) SM. Fine. PhD. Thom. Gminersity of Cohfornis. Berkeley. California. 1986
10 For reviews see (a) G.D. Stucky in A.W. Langer, Ed.). Polyamine Chelated Atkah Vetal Complexes. Adv. Chem Ser 130. ACS. Washingon 1974 p 50 . b) W.N. Setoer and P. ©on R Shleven Ad Organomet. (hem.. 24 (1985) 354
11 (a) B. Teele. A.F.M.M. Rahman, and JP. Oliver, J. Organomet. Chem. 317 (1986) 267 . (h) M.F Lappert, CL. Raston, B.W. Sketton. and A.H. White, I Chem. Sox.. Chem. Commun, 11982) 14
 Stucky, and S.W. Peterson. Ibid., 97 (1975)6401.
13 1.A. Thers and R.G. Snyder. Acta Cryst. 15 (1962) 92 :
14 (a) F.W.S. Benfield. R.A. Forder M.L.H. Green. G.A. Moser, and K. Prout. J Chem. Soc. Chem Comm.. (1973) 759. (h) R.A. Forder and K. Prout, Acta Cryst., B30 (1974), 2318. (b) I A. Bandy. A. Berry, M.L.F. Green, and K. Prout, J. Chem. Soc, Chem. Comm.. (1985)1462, 3) K. Jonas, Angew Chem. Int. Ed., 14 (1975) 752. (e) H. Bönneman. (. Krüger, and Y HI Tsay. Bid. 15 (1976). 46. (f) K . fonas and L. Schieferstein, ibid. 15 (1976) 622. (g) K. Jonas, R. Mynott, C. Krages. BC. Sckutowski.
 487. (i) K. Jonas, L. Schieferstein. C. Krüger, and Y.H. Thay. ibid. 181979 , 550 , (i) K. Jonas and (Krüger, Ibid., 19 (1980) 520. (k) D I. Brater. C Krüger, and J.C Schumanki) Oreanomet Chem 178 (1979) 249 (1) K. Jonas and C. Krüger. Angew. Chem. Int. Fd. 14 (1940) 50 (m) k Jonas, ibich. 24 (1985)295.(n) K. Jonas, Ads. Organomet. Chem.. 19 (1981) 47.
15 (a) K. Angermund, K.H. Claus. K. Goddard, and C. Kriger. Angew, Ghem. Int. Ed. 24 (1985), 237 (b) R. Goddard and C. Krüger in P', Coppens and M.B. Hall. (Eds.). Elctron Diveribution and the Chemical Bond. Plenum Press, New York (1982) p. 297.
16 VW. Day. W.G. Klemperer and DJ Mathie Organometalics 4119 s 5104.

[^0]: * Author to whom correspondence should be directed.
 ** Deceased 12 January 1984.

[^1]: * Reference number with asterisk indicates a note in the list of references.

[^2]: " The symbols $\mathrm{C}(1,2)$ and $\mathrm{C}(5.6)$ are used to denote the centers of the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}, \mathrm{C}) \mathrm{C}$) bonds,

